You have successfully logged out.

Hello !
Logout

MIETHKE M.scio®

Non-invasive telemetric pressure measurement

Importance and limitations of conventional ICP monitoring

Many pathological conditions such as traumatic brain injury, intracranial hemorrhage, or hydrocephalus may be associated with a life-threatening increase in intracranial pressure (ICP). [1] Accurate determination of this value is therefore a prerequisite for the application of ICP – lowering measures. [2] It is not possible to adequately quantify intracranial pressure based on symptoms or imaging alone. [3], [4] Therefore, catheter-based sensors are often used, which provide continuous access to ICP values and thus facilitate treatment. [7] However, decision making with such conventional sensors can be very complex and risky, requiring multiple surgical procedures that also result in recurrent costs for surgery, hospitalization, and equipment.

 

Different icons for importance and limitations of conventional ICP monitoring
  • Physical connection to patient required [9]
  • Increased risk of infection [4], [6], [7]
  • Malfunctions [12]
  • Unsuitable for MRI [10]
Different icons for importance and limitations of conventional ICP monitoring
Different icons for importance and limitations of shunt-based ICP management
Different icons for shunt assessment is challenging, expensive and not risk-free
Different icons for shunt assessment is challenging, expensive and not risk-free

Clinical studies have shown a potential of...

  • 0%

    Reduction in acute presentations to hospital [26]

  • 0%

    Cost saving per patient compared to non M.scio® supported therapy [26]

  • 0%

    Reduction in CT Scans [26]

Guidance for hydrocephalus management

  • Up to

    0%

    of patients reported improvement of clinical symptoms after valve adjustments based on M.scio® readout. [16], [26]

M.scio® implants in four different designs
M.scio® reader unit set

Related document

[1] Dunn, L. T. Raised intracranial pressure. Journal of neurology, neurosurgery, and psychiatry 2002, 73 Suppl 1, i23-7. DOI: 10.1136/jnnp.73.suppl_1.i23.

[2] Miltner, F. Intrakranieller Druck (ICP), S1-Leitlinie, 2018 in: Deutsche Gesellschaft für Neurologie (Hrsg.), Leitlinien für Diagnostik und Therapie in der Neurologie.

[3] Le Roux, P., Ed. Intracranial Pressure Monitoring and Intracranial Pressure Monitoring and Management. In: Laskowitz D, Grant G, editors. Translational Research in Traumatic Brain Injury; Boca Raton (FL): CRC Press/Taylor and Francis Group, 2016.

[4] Evensen, K. B.; Eide, P. K. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids and barriers of the CNS 2020, 17 (1), 34. DOI: 10.1186/s12987-020-00195-3. Published Online: May. 6, 2020.

[5] Kawoos, U.; McCarron, R. M.; Auker, C. R.; Chavko, M. Advances in Intracranial Pressure Monitoring and Its Significance in Managing Traumatic Brain Injury. International journal of molecular sciences 2015, 16 (12), 28979–28997. DOI: 10.3390/ijms161226146. Published Online: Dec. 4, 2015.

[6] Nag, D. S.; Sahu, S.; Swain, A.; Kant, S. Intracranial pressure monitoring: Gold standard and recent innovations. World journal of clinical cases 2019, 7 (13), 1535-1553. DOI: 10.12998/wjcc.v7.i13.1535.

[7] Yu, L.; Kim, B. J.; Meng, E. Chronically implanted pressure sensors: challenges and state of the field. Sensors (Basel, Switzerland) 2014, 14 (11), 20620–20644. DOI: 10.3390/s141120620. Published Online: Oct. 31, 2014.

[8] Turz; Turtz, A. R. Fiberoptic lntracranial Pressure Monitors // Intracranial Monitoring 2008, 28, 281–288. DOI: 10.1016/B978-032304841-5.50019-4.

[9] Frischholz, M.; Sarmento, L.; Wenzel, M.; Aquilina, K.; Edwards, R.; Coakham, H. B. Telemetric implantable pressure sensor for short- and long-term monitoring of intracranial pressure. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2007, 2007, 514. DOI: 10.1109/IEMBS.2007.4352337.

[10] Raboel, P. H.; Bartek, J.; Andresen, M.; Bellander, B. M.; Romner, B. Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods-A Review. Critical care research and practice 2012, 2012, 950393. DOI: 10.1155/2012/950393. Published Online: Jun. 8, 2012.

[11] LHCS. Procedure: insertion of codman microsensor evd or intraparenchymal monitor and setup of codman express. https:// www.lhsc.on.ca / critical- care- trauma-centre/ procedure- insertion- of- codman- microsensor- evd- or- intraparenchymal (accessed 2022-01-12).

[12] Anderson; Anderson, R. C. E.; Kan, P.; Klimo, P.; Brockmeyer, D. L.; Walker, M. L.; Kestle, J. R. W. Complications of intracranial pressure monitoring in children with head trauma. Journal of neurosurgery 2004, 101 (1 Suppl), 53–58. DOI: 10.3171/ped.2004.101.2.0053.

[13] Eide, P. K.; Eide, P. K.; Bakken, A. The baseline pressure of intracranial pressure (ICP) sensors can be altered by electrostaticdischarges // The baseline pressure of intracranial pressure (ICP) sensors can be altered by electrostatic discharges. Biomedical engineering online 2011, 10, 75. DOI: 10.1186/1475-925X-10-75. Published Online: Aug. 22, 2011.

[14] Pedersen, S. H.; Lilja-Cyron, A.; Astrand, R.; Juhler, M. Monitoring and Measurement of Intracranial Pressure in Pediatric Head Trauma. Frontiers in neurology 2019, 10, 1376. DOI: 10.3389/fneur.2019.01376. Published Online: Jan. 14, 2020.

[15] Freimann, F. B.; Schulz, M.; Haberl, H.; Thomale, U.-W. Feasibility of telemetric ICP-guided valve adjustments for complex shunt therapy. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery 2014, 30 (4), 689–697. DOI: 10.1007/s00381-013-2324-0. Published Online: Nov. 22, 2013.

[16] Antes, S.; Stadie, A.; Müller, S.; Linsler, S.; Breuskin, D.; Oertel, J. Intracranial Pressure-Guided Shunt Valve Adjustments with the Miethke Sensor Reservoir. World neurosurgery 2018, 109, e642-e650. DOI: 10.1016/j.wneu.2017.10.044. Published Online: Oct. 17, 2017.

[17] Boyle, T. P.; Nigrovic, L. E. Radiographic evaluation of pediatric cerebrospinal fluid shunt malfunction in the emergency setting. Pediatric emergency care 2015, 31 (6), 435-40; quiz 441-3. DOI: 10.1097/PEC.0000000000000462.

(18) Aralar, A.; Bird, M.; Graham, R.; Koo, B.; Chitnis, P.; Sikdar, S.; Shenai, M. Assessment of Ventriculoperitoneal Shunt Function Using Ultrasound Characterization of Valve Interface Oscillation as a Proxy. Cureus 2018, 10 (2). DOI: 10.7759/cureus.2205.

[19] Lutz, B. R.; Venkataraman, P.; Browd, S. R. New and improved ways to treat hydrocephalus: Pursuit of a smart shunt. Surgical neurology international 2013, 4 (Suppl 1), S38-50. DOI: 10.4103/2152-7806.109197. Published Online: Mar. 19, 2013.

[20] Merkler, A. E.; Ch'ang, J.; Parker, W. E.; Murthy, S. B.; Kamel, H. The Rate of Complications after Ventriculoperitoneal Shunt Surgery. World neurosurgery 2017, 98, 654–658. DOI: 10.1016/j.wneu.2016.10.136. Published Online: Nov. 5, 2016.

[21] Rocque, B. G.; Lapsiwala, S.; Iskandar, B. J. Ventricular shunt tap as a predictor of proximal shunt malfunction in children: a prospective study. Journal of neurosurgery. Pediatrics 2008, 1 (6), 439–443. DOI: 10.3171/PED/2008/1/6/439.

[22] Meulepas, J. M.; Ronckers, C. M.; Smets, A. M. J. B.; Nievelstein, R. A. J.; Gradowska, P.; Lee, C.; Jahnen, A.; van Straten, M.; Wit, M.-C. Y. de; Zonnenberg, B.; Klein, W. M.; Merks, J. H.; Visser, O.; van Leeuwen, F. E.; Hauptmann, M. Radiation Exposure from Pediatric CT Scans and Subsequent Cancer Risk in the Netherlands. Journal of the National Cancer Institute 2019, 111 (3), 256–263. DOI: 10.1093/jnci/djy104.

[23] Ertl, P.; Hermann, E. J.; Heissler, H. E.; Krauss, J. K. Telemetric Intracranial Pressure Recording via a Shunt System Integrated Sensor: A Safety and Feasibility Study. Journal of neurological surgery. Part A, Central European neurosurgery 2017, 78 (6), 572–575. DOI: 10.1055/s-0037-1603632. Published Online: Jun. 6, 2017.

[24] Miethke Bench Test.

[25] Norager, N. H.; Lilja-Cyron, A.; Hansen, T. S.; Juhler, M. Deciding on Appropriate Telemetric Intracranial Pressure Monitoring System. World neurosurgery 2019, 126, 564–569. DOI: 10.1016/j.wneu.2019.03.077. Published Online: Mar. 18, 2019.

[26] Bjornson, A.; Henderson, D.; Lawrence, E.; McMullan, J.; Ushewokunze, S. The Sensor Reservoir-does it change management? Acta neurochirurgica 2021, 163 (4), 1087–1095. DOI: 10.1007/s00701-021-04729-y. Published Online: Feb. 15, 2021.

[27] Miethke customer survey.

[28] Czosnyka, M.; Czosnyka, Z. Origin of intracranial pressure pulse waveform. Acta neurochirurgica 2020, 162 (8), 1815–1817. DOI: 10.1007/s00701-020-04424-4. Published Online: Jun. 13, 2020.

[29] Pennacchietti, V.; Prinz, V.; Schaumann, A.; Finger, T.; Schulz, M.; Thomale, U. W. Single center experiences with telemetric intracranial pressure measurements in patients with CSF circulation disturbances. Acta neurochirurgica 2020, 162 (10), 2487–2497. DOI: 10.1007/s00701-020-04421-7. Published Online: Jun. 3, 2020.

[30] Thompson, S. D. Telemetric monitoring of ICP within a shunt system. A single centre experience including the first in vivo comparison versus conventional intraparenchymal monitoring. Fluids and barriers of the CNS 2017 (14(Suppl 1):A63).

[31] Shellock, F. G.; Knebel, J.; Prat, A. D. Evaluation of MRI issues for a new neurological implant, the Sensor Reservoir. Magnetic resonance imaging 2013, 31 (7), 1245–1250. DOI: 10.1016/j.mri.2013.03.012. Published Online: Apr. 18, 2013.